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Classification and Boosting with Multiple
Collaborative Representations

Yuejie Chi, Member, IEEE, and Fatih Porikli, Fellow, IEEE

Abstract—Recent advances have shown a great potential to explore collaborative representations of test samples in a dictionary
composed of training samples from all classes in multi-class recognition including sparse representations. In this paper, we present
two multi-class classification algorithms that make use of multiple collaborative representations in their formulations, and demonstrate
performance gain of exploring this extra degree of freedom. We first present the Collaborative Representation Optimized Classifier
(CROC), which strikes a balance between the nearest-subspace classifier, which assigns a test sample to the class that minimizes
the distance between the sample and its principal projection in the selected class, and a Collaborative Representation based
Classifier (CRC), which assigns a test sample to the class that minimizes the distance between the sample and its collaborative
components. Several well-known classifiers become special cases of CROC under different regularization parameters. We show
classification performance can be improved by optimally tuning the regularization parameter through cross validation. We then
propose the Collaborative Representation based Boosting (CRBoosting) algorithm, which generalizes the CROC to incorporate
multiple collaborative representations. Extensive numerical examples are provided with performance comparisons of different choices
of collaborative representations, in particular when the test sample is available via compressive measurements.

Index Terms—Multi-class classification, sparsity, compressive sensing, collaborative representation, boosting

1 INTRODUCTION

MULTI-CLASS classification, where the goal is to assign
one of several class labels to a test sample, is an

important task encountered in many applications and has
attracted significant research interests in decades. It is
widely used for protein function identification [2], text
classification [3], face recognition [4], multi-user detec-
tion [5], etc.

Recent advances in Compressive Sensing (CS) [6], [7] and
Sparse Learning [8], [9] have reported significant success in
the adoption of sparse representations in signal processing,
machine learning and pattern recognition. If a signal can be
representedbyafewparameters, i.e.admitsasparserepresen-
tation in certain domain, then it is possible to reconstruct the
signal from a much smaller number of linear measurements
than its ambient dimension, given that the measurement
matrix satisfies certain properties such as restricted isometry
properties [7]. Many real-world signals have been shown to
possess such representations, for example, an image patch
can be regarded as a sparse signal in the wavelet domain. On
the other hand, given the compressive measurements of the
test samples, it is shown in [10] that the Euclidean distance
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between samples from different classes are preserved in the
compressive domain, enabling the performance of learning
and inference tasks without first reconstructing the original
samples [11]. This is especially desirable when full data are
impossible to obtain due to either power constraints in sens-
ing or unavailability of user information, which commonly
arise in recommender systems.

There is also an increasing trend to explore sparsity in
the feature domain, in particular for multi-class recogni-
tion such as face recognition [12], [13]. Assume that the test
sample can be linearly represented by the training samples
in the same class. It then admits a sparse representation
in the dictionary spanned by all training samples from all
classes, where most nonzero components are expected to
be found in the correct class. By reconstructing the sparse
representation using sparse recovery algorithms such as �1
minimization [14] or greedy pursuits [15], and feeding it
into a Sparse Representation based Classifier (SRC) [12],
Wright et al. showed that both accuracy and robustness
can be improved for face recognition. However, one main
drawback of this approach is the computational complexity
of acquiring the sparse representations. The computational
load of sparse recovery algorithms is still prohibitively
high especially when the training set is large. Many works
have been steered in this direction including the use of
Gabor frame based sparse representations [16], learned dic-
tionary of smaller size instead of the whole training set [17],
random hashing [18], etc.

Despite the initial success, there has been a debate
whether sparse representations are really necessary. In
fact, a test sample has an infinite number of possible
representations in the dictionary spanned by the train-
ing samples. Since all training samples collaboratively form
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Fig. 1. Illustration of why adopting multiple CRs helps in multi-class
classification.

the representation of the test sample, all of these possible
solutions are indiscriminately referred to as Collaborative
Representations (CRs) [13], sometimes dictionary represen-
tations [19], in the literature. The sparse representation is
only one such example. It is argued in [13], [20] that it is
not the sparse representation but the adoption of collabo-
rative representations in general play a more crucial role
in the success of the SRC. For instance, using a different
collaborative representation for the SRC, such as a regu-
larized least-norm representation, similar performance can
be achieved with much lower complexity [13]. However, a
recent paper [21] suggested that sparse representations are
more robust to occlusions and corruptions compared with
their non-sparse counterparts.

Rather than trying to settle the debate by claiming which
collaborative representation is optimal, we present multi-
class classification algorithms that make use of multiple
CRs in their formulations, and demonstrate performance
gain by leveraging this extra degree of freedom through
theoretical analysis and numerical experiments. Fig. 1 intu-
itively illustrates the concept, where a test sample from
Class 2 is decomposed using two different CRs in (a) onto
the space of Class 1 and 2, and in (b) onto the space of Class
2 and 4. In both cases the sample has a smaller projection
residual to the correct Class 2, but in neither case it provides
a large enough margin compared with the projection resid-
ual to the wrong class. By combining the two CRs cleverly,
we can obtain a stronger confidence in claiming the test
sample is indeed from Class 2. This performance gain indi-
cates that it is possible to leverage several easy-to-compute
CRs with weaker performance into a classifier with per-
formance comparable to a CR with better performance but
difficult to compute.

In this paper, we decompose the multi-class classifica-
tion problem into two parts, first finding the CRs and then
imposing them to a classifier that computes the residual
towards each class in order to properly harness the CRs of
the test sample. Using the CRs, the test sample is decom-
posed into a sum of components that each coming from
a different subspace, possibly overlapping, spanned by a
separate class. In the first half of this paper, we propose a
multi-class classifier, called as Collaborative Representation
Optimized Classifier (CROC), that achieves optimal combi-
nation of the Nearest Subspace Classifier (NSC) [22], which
classifies a sample to the class with the minimal resid-
ual between the test sample and its principal projection
to that class, and the Collaborative Representation based

Classifier (CRC), which classifies a sample to the class with
the minimal residual between the test sample and its CR
components. Under our framework, the well-known SRC
and NSC become special cases of CROC under different
regularization parameters and particular choices of CRs.
The regularization parameter can be optimally tuned via
cross validation, which is done at little computational cost.
We provide numerical examples to compare the classifica-
tion performance for sparse and non-sparse CRs, and show
in some cases the gain of using sparse representations can
be achieved by using a non-sparse representation with an
optimally tuned regularization parameter.

Furthermore, we show that the CROC applies a proper
weighted combination in the residual domain of a partic-
ular CRC and NSC. In practice, it is often challenging to
determine the proper rank of the subspace in NSC and
which CR to use in CRC. While the success of CROC sug-
gests potential benefits of using multiple CRs in a classifier,
it is not straightforward to generalize to the scenario when
there are more than two candidate CRCs and NSCs since
running cross validation to find the corresponding weights
becomes impractical as the number of classifiers gets
large.

In the second half of this paper, we introduce the
Collaborative Representation based Boosting (CRBoosting)
algorithm, which finds a weighted sum of the CRCs
and NSCs in the residual domain derived from a set
of candidate CRs. The CRBoosting algorithm is inspired
by AdaBoost [23], but the key difference is CRBoosting
forms the weighted classifier in the residual domain before
classification, while AdaBoost forms a weighted classi-
fier in the decision domain. This allows CRBoosting to
outperform classifiers using individual CRs. It can also
optimize the performance even with only two candidate
CRs, which is impossible for AdaBoost. In addition, the
presented CRBoosting algorithm elegantly selects the best
rank for the NSC and the best CRC to use. We pro-
vide performance bounds for the CRBoosting algorithm
and present quantitative results to show the advantages of
CRBoosting.

The rest of this paper is organized as follows. The multi-
class classification problem is described in Section 2. The
proposed CROC is presented in Section 3. The CRBoosting
algorithm is then proposed in Section 4 to efficiently com-
bine multiple CRCs and NSCs in classification. Numerical
examples are given for digit classification and face recog-
nition of proposed algorithms in Section 5. Finally we
conclude the paper in Section 6.

A note on notation: we use boldface to denote matrices
and vectors. For a matrix A, AT denotes its transpose, A†

denotes its Penrose-Moore pseudo-inverse, A−1 denotes its
inverse if exists. In denotes an identity matrix of dimension
n. We summarize the key acronyms and parameters used
throughout the paper in Table 1.

2 MULTI-CLASS CLASSIFICATION

Assume there are K classes, where there are ni training
samples from the ith class stacked in a matrix as

Ai = [
ai,1, . . . , ai,ni

] ∈ R
m×ni ,
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TABLE 1
Acronyms and Key Parameters

and ai,j ∈ R
m is the jth training sample of dimension m from

the ith class. By concatenating all training samples we get
the training dictionary

A = [A1, A2, . . . , AK] ∈ R
m×n,

where n = ∑K
i=1 ni is the total number of training samples.

We are interested in classifying the test sample y ∈ R
m,

given the labeled training samples in A.
In this paper, the multi-class classification problem is

explicitly decomposed into two parts, namely finding the
CR of the test sample in the training dictionary, and
inputting the CR to a classifier to estimate the label. We
will discuss these two parts respectively below.

2.1 Collaborative Representations of Test Samples
We assume that samples within a class lie in the same
low-dimensional linear subspace. For example, it is well-
established that the face images of the same individual
under various illuminations and expressions will approxi-
mately span a low-dimensional linear subspace in R

m [24],
[25]. If the test sample y can be represented as a superpo-
sition of training samples in the dictionary A, given in a
linear model as

y = AxCR, (1)

where xCR ∈ R
n is a CR of the test sample by exploring

all training samples as a dictionary. When A is over-
determined, i.e. the dimension of the samples is much
larger than the number of training samples, the Least-
Squares (LS) solution of (1) is given as

xLS = arg min
x

‖y − Ax‖2 = A†y, (2)

where † denotes pseudo-inverse and A† = (ATA)−1AT.
In many cases the LS solution (2) might lead to over-

fitting, therefore the test sample is mapped into a low-
dimensional feature domain via dimensional reduction
methods such as Principal Component Analysis (PCA),
Linear Discriminant Analysis (LDA), and random pro-
jections first. In face recognition, the features extracted
using the above methods are referred to as Eigenface [26],

Fisherface [24] and Randomface [12] respectively. Another
important argument is motivated by the theory of CS, when
it is impossible to acquire the full samples, only a partial
observation is available via linear measurements and one
is interested in classification using the incomplete infor-
mation. This can be viewed equivalently as linear feature
extraction. In this paper, we focus on linear features, i.e. the
extracted features of both the test and the train samples can
be written in terms of linear transformation:

z = �y; � = �A, (3)

where � ∈ R
d×m is the measurement matrix or linear trans-

formation, d is the feature dimension, z is the feature of the
test sample, and � = [�1,�2, . . . ,�K] is the feature of the
training dictionary. For face recognition, both Eigenface and
Randomface are linear features while Fisherface is not. If �

is generated with random i.i.d. entries from Gaussian or
uniform distributions, then the low-dimensional features
effectively embed the high-dimensional samples by pre-
serving their Euclidean distances up to a small perturbation
via the Johnson-Lindenstrauss lemma [27].

Now the test sample in the feature domain can be
represented as

z = �sCR, (4)

where sCR denotes the CR computed using the extracted
features. When the size of the training dictionary is greater
than the feature dimension, there are an infinite number of
possible representations, we solve the regularized problem
below to find the CR,

sCR = arg min
s

‖z − �s‖2
2 + εf (s), (5)

where ε is the regularization parameter and f (s) is the
regularization function.

The sparse representation is obtained by choosing f (s) =
‖s‖1, i.e.

sL1(ε) = arg min
s

‖z − �s‖2
2 + ε‖s‖1, (6)

The �1 constraint is imposed to approximate the �0 norm,
aiming to use a minimal number of training samples to rep-
resent the test sample, as it is beneficial in some cases where
most of the nonzero entries will come from the correct class,
but the complexity is greatly increased. It is also possible
to consider a sparse representation with more structures
such as group sparsity [28], where the ith group includes
all samples from the ith class. In practice, the regularization
parameter ε may depend on the noise variance and can be
used to control the sparsity level of the CR.

The least-norm representation is obtained by choosing
the regularizer as f (s) = ‖s‖2:

sL2(ε) = arg min
s

‖z − �s‖2
2 + ε‖s‖2

2, (7)

whose solution can be written explicitly as sL2
R (ε) = (�T�+

εIm)−1�Tz.
The solutions for (6) and (7) can also be computed for the

full test sample y in (1) without dimensionality reduction,
denoting their solutions as xL1(ε) and xL2(ε).

The test image y or its reduced-dimension signal z is rep-
resented using all examples from all classes from (1) and
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(4). Since different classes “collaborate” in the process of
forming the representation, x and s are considered as col-
laborative representations. If the CR of the test sample y is
decomposed for each class as xCR = [xCR

1 , . . . , xCR
K ], where

xCR
i is the part of coefficients corresponding to the ith class

in xCR. Then the test sample can be written as a sum of
components from different classes, namely

y =
K∑

i=1

yi, (8)

where yi = AixCR
i , 1 ≤ i ≤ K is defined as the ith col-

laborative representation component. Note this can also be
defined for the feature z, given

z =
K∑

i=1

zi,

where zi = � isCR
i is the ith collaborative representation

component in the feature domain.

2.2 Nearest Subspace Classifier
The Nearest Subspace Classifier (NSC) [22] assigns the test
sample z to the ith class if the projection residual rNS

i from
z to the subspace spanned by the ith training set � i is the
smallest among all classes, i.e.

NSC(z) = arg min
i

rNS
i . (9)

When the number of training samples per class is small so
that they do span a subspace, which for face recognition
is usually the case, � i’s are over-determined. Then rNS

i is
given as

rNS
i = min

si
‖z − � isi‖2

2 (10)

=
∥∥∥z − � isLS

i

∥∥∥
2

2

=
∥∥∥(I − � i�

†
i )z

∥∥∥
2

2
, i = 1, . . . , K. (11)

where sLS
i = �†

i z, with �†
i = (�T

i � i)
−1�T

i .
When the number of training samples is large, such as

in digit recognition, � i’s are under-determined, a principal
subspace Bi ∈ R

d×k of rank k for each class is first extracted
using PCA to avoid overfitting, then the projection residual
rNS(k)

i is computed as

rNS(k)
i = min

si
‖z − Bisi‖2

2 , (12)

=
∥∥∥z − BiBT

i z
∥∥∥

2

2

=
∥∥∥z − � is

LS(k)
i

∥∥∥
2

2
, i = 1, . . . , K. (13)

where (13) follows from the fact Bi� i�
†
i = Bi, and �†

i =
�T

i (� i�
T
i )−1, therefore sLS(k)

i = �†
i BiBT

i z.
Strictly speaking, the NSC does not require collabora-

tion of different classes to determine the label, and simply
measures the similarity between the test sample and each
class without considering the similarities between classes.
In practice, the rank k has to be chosen via cross validation
or other techniques in order to obtain good performance.

2.3 Collaborative Representation Based Classifier
We define the Collaborative Representation based Classifier
(CRC) which uses a choice of collaborative representation
sCR = [sCR

1 , sCR
2 , . . . , sCR

K ] of its feature z as an input1, and
identifies the test image with the ith class if the residual of
the test sample using the i the collaborative representation
component, i.e.

CRC(z) = arg min
i

rCR
i , (14)

where

rCR
i = ‖z − zi‖2

2

=
∥
∥
∥z − � isCR

i

∥
∥
∥

2

2
, 1 ≤ i ≤ K (15)

is the smallest for the ith class.
The Sparse Representation based Classifier (SRC)

was the first classifier proposed in the form of
CRC [12] which uses the sparse representation as
an input. In the supplementary material, which is
available in the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/236 of [12]
the authors discussed the benefits of the SRC from
a sparse representation viewpoint. If the test image
can be sparsely represented by all training images as
xCR = [0, . . . , xCR

i , . . . , 0], such that it can be represented by
using only training samples within the correct class, given
the abundance availability of training, then the residual for
the correct class will be zero while the residual from other
classes is the norm of the test image, resulting in maximal
discriminative power for classification. In [13] the authors
showed that the SRC checks not only the angle between
the test image and the partial signal represented by the
coefficient on the correct class (which should be small);
but also the angle between the partial signal represented
by the coefficient on the correct class and that on the rest
classes (which should be large).

Although the name SRC indicates this method is
designed for sparse representations, it was then quickly
adopted in many follow-up works to incorporate other
types of collaborative representations. Here, we recast the
SRC as a special case of the CRC to avoid ambiguities and
unify previous work under the same umbrella. In partic-
ular, the CRC using xLS is adopted in [20], and the CRC
using sL2(ε) is adopted in [13] respectively for face recog-
nition. However, the computational cost of xLS and sL2(ε)

is much smaller than that of sL1.

3 COLLABORATIVE REPRESENTATION
OPTIMIZED CLASSIFIER (CROC)

In this section we propose a novel optimized classifier,
which defines a regularized path of classifiers that connects
the NSC and the CRC, where both the SRC and the NSC
can be viewed as particular dots on the path.

3.1 Balancing between NSC and CRC
Given the NSC and the CRC, which look at intra-class resid-
ual and inter-class residual respectively, we introduce the

1. Also applies to the test sample y in the original space. For
consistency of the presentation we adopt the feature space notation.
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Collaborative Representation Optimized Classifier (CROC),
which computes a regularized path to study the trade-off
between these two classifiers, where

CROC(z, λ) = arg min
i

ri(λ), (16)

where the residual for each class is calculated as follows

ri(λ) = (1 − λ)rNS
i + λrCR

i , (17)

where 0 ≤ λ ≤ 1. Note that the total weights of both clas-
sifiers sum up to 1, since the classification result doesn’t
change when the residual is scaled. The test sample is
then assigned to the class that has the minimal weighted
residual. When λ = 0, the CROC is equivalent to the
NSC; and when λ = 1, the CROC is equivalent to the
CRC. In practice, cross-validation may be used to determine
the optimal λ, as we will further show in the numerical
examples Section 5.1, and better regularization parameter
exists to outperform the CRC regardless of the choice of
collaborative representations for the test sample.

3.2 When Training Samples Are Limited
If all Ai’s are over-determined, the NSC is computed using
(10). In this case, the residual of each class for the CRC can
be rewritten in the following way:

rCR
i =

∥∥∥z − � isCR
i

∥∥∥
2

2

=
∥∥∥z − � i�

†
i z + � i(�

†
i z − sCR

i )

∥∥∥
2

2

=
∥∥∥(I − � i�

†
i )z

∥∥∥
2

2
+

∥∥∥� i(�
†
i z − sCR

i )

∥∥∥
2

2
(18)

=
∥∥∥(I − � i�

†
i )z

∥∥∥
2

2
+

∥∥∥� i(sLS
i − sCR

i )

∥∥∥
2

2

� rNS
i + rDR

i , (19)

where (18) follows from

(I − � i�
†
i )� i = 0, (20)

and (19) follows by letting

rDR
i =

∥∥∥� i(sLS
i − sCR

i )

∥∥∥
2

2
, (21)

which measures the residual rDR
i between the ith collabo-

rative representation component of a test sample, and its
orthogonal projection within that class. This can be seen as
a measure of the difference between signal representations
obtained from using only the intra-class information and
the one using the inter-class information obtained from the
collaborative representation.

Plugging (19) into the residual of the CROC (17), we get

ri(λ) = rNS
i + λrDR

i . (22)

When the training samples are limited, i.e. Ai’s are over-
determined, we could also rewrite the residual error for the
CROC by plugging (10) and (21) into (22), given as

ri(λ) =
∥∥∥z − � isLS

i

∥∥∥
2

2
+ λ

∥∥∥� i(sLS
i − sCR

i )

∥∥∥
2

2

=
∥∥∥z − � isLS

i + √
λ� i(sLS

i − sCR
i )

∥∥∥
2

2
(23)

=
∥∥∥z − � i

[
(1 − √

λ)sLS
i + √

λsCR
i

]∥∥∥
2

2

= ∥
∥z − � is̃i

∥
∥2

2 , (24)

where (23) follows again from (20), and

s̃i = (1 − √
λ)sLS

i + √
λsCR

i .

Denote s̃ as

s̃ = [s̃1, . . . , s̃K] = (1 − √
λ)sLS + √

λsCR,

where sCR is the input CR, sLS = [sLS
1 , . . . , sLS

K ] is a combined
representation by the LS solution within each class, then s̃
can be considered as another CR induced by s.

4 BOOSTING WITH MULTIPLE CRS

The CROC adopts a weighted combination of the CRC with
a particular CR and the NSC with a specific rank, and sug-
gests significant benefits in classification. For instance, in
(10) and (12) of NSC, we can define sLS = [sLS

1 , sLS
2 , . . . , sLS

K ]
and

sNS(k) = [sLS(k)
1 , sLS(k)

2 , . . . , sLS(k)
K ]

as the corresponding LS representation with rank k.
In practice, it is challenging to determine a proper CR

for the CRC as well as a proper rank for the NSC without
running cross validation or prior knowledge. One can then
ask the question that if it is possible to combine and select
from multiple CRCs with different CRs and multiple NSCs
with different ranks without running cross validation.

Here, we generalize the CROC approach to combine
multiple CRCs and NSCs by formulating a weighted sum
of residuals of each class using different CRs and LS rep-
resentations, and classifying the test sample to the class
with the smallest residual. This allows automatic selection
of the most suitable representations for different problems.
In addition, it provides an alternative way to determine
the regularization parameters in (5), by including a set
of collaborative representations with different regulariza-
tion parameters into the candidate set. Below, we introduce
an algorithm named Collaborative Representation based
Boosting (CRBoosting) to determine the weights in the
combined classifier, inspired by AdaBoost [23].

4.1 CRBoosting Algorithm
Consider a candidate set of T collaborative representations
or least-squares representations. Let st be the tth represen-
tation of interest, 1 ≤ t ≤ T. We are interested in finding a
weighted classifier H(z) that classifies a sample z with the
class having the minimal weighted residual ri(α), given as

H(z) = arg min
i

ri(α),

where

ri(α) =
T∑

t=1
αt‖z − � ist

i‖2
2, (25)

α = [α1, . . . , αT] is a positive vector, and without loss
of generality, 1Tα = ∑T

t=1 αt = 1. In comparison, the
AdaBoost algorithm finds a weighted classifier in the deci-
sion domain, given as

H∗(z) = arg min
1≤i≤K

T∑

t=1
αtht

i(z), (26)



1524 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 36, NO. 8, AUGUST 2014

Algorithm 1 CRBoosting

1: Input: training set A, validation set Y = [y�] ∈ R
m×L

and their labels c�, and the measurement matrix �;
2: Compute the measurements or features: Z = �Y, � =

�A;
3: Initialize the distribution D1(�) = 1/L.
4: for t = 1 → N do
5: Find the representation on the distribution Dt to

maximize |εt/bt|, where

εt = EDt

[
d�,t

]
and bt = max

�
|d�,t|, (27)

and

d�,t = ‖z� − �c�
st

c�
‖2

2 − min
i	=c�

‖z� − � ist
i‖2

2.

6: Choose αt ∈ R as:

αt = max
{

1
2bt

log
(

bt − εt

bt + εt

)
, 0

}
;

7: Update Dt+1:

Dt+1(�) = Dt(�)

Zt
eαtd�,t ,

where Zt is the normalization factor.
8: end for
9: Output: The weights {αt}T

t=1 after normalization.

where ht
i(z) = 1 if z is classified to the ith class by the tth

CRC, and ht
i(z) = 0 otherwise.

With two candidate representations, the solution to
AdaBoost is equal to the candidate with the larger weight.
To spell out our advantage, the proposed CRBoosting clas-
sifier becomes the CROC and constructs an optimized
classifier with better accuracy, as shown in Sec 5.3.

The CRBoosting weights αt’s are learned on a valida-
tion set via the proposed algorithm as summarized in
Algorithm 1. It is straightforward to see |εt| < bt for every t.
The iterations stop if αt = 0 for certain t. In simulations, we
run the algorithm with more iterations to allow refinement
of weight estimation.

It is worth noting that d�,t measures the difference
between the residual of the correct class and the mini-
mal residual of the rest of the classes of the �th sample.
Therefore d�,t < 0 if it is labeled correctly by the ith CRC,
and d�,t > 0 otherwise. The CRBoosting algorithm thus
update the distribution Dt+1(�) by putting more weights
on the tth classifier if it is incorrect.

PD1(H(z�) 	= c�)

= 1
L

L∑

�=1

{

c� 	= arg min
i

T∑

t=1

αt‖z� − � ist
i‖2

2

}

(28)

= 1
L

L∑

�=1

{ T∑

t=1

αt‖z� − �c�
st

c�
‖2

2 ≥ min
i	=c�

T∑

t=1

αt‖z� − � ist
i‖2

2

}

≤ 1
L

L∑

�=1

{ T∑

t=1

αt‖z� − �c�
st

c�
‖2

2 ≥
T∑

t=1

αt min
i	=c�

‖z� − � ist
i‖2

2

}

(29)

≤ 1
L

L∑

�=1

exp

{ T∑

t=1

αt(‖z� − �c�
st

c�
‖2

2 − min
i	=c�

‖z� − � ist
i‖2

2)

}

(30)

4.2 Classification Error on Validation Set
Similar to AdaBoost, the training error on the validation set
is bounded by

∏T
t=1 Zt as the theorem below.

Theorem 1. The validation error with respect to the initial
distribution D1 is bounded by

PD1(H) = 1
L

L∑

�=1

1{H(z�) 	= c�} ≤
T∏

t=1

Zt, (31)

where {P} is the indicator function of an event P .

Proof. The error on the validation set can be bounded by
(28)-(30), where (29) follows from

min
i	=c�

T∑

t=1

αt‖z� − � ist
i‖2

2 ≥
T∑

t=1

αt min
i	=c�

‖z� − � ist
i‖2

2,

and (30) follows from {a > b} ≤ exp{a − b} for any a an
b. Now we unwrap the distribution DT(�) as

DT(�) = D1(�)∏T
t=1 Zt

· exp

{
T∑

t=1
αtd�,t

}

,

and plug this and D1(�) = 1/L into (30), we get

PD1(H(z�) 	= c�) ≤
L∑

�=1
DT(�) ·

T∏

t=1
Zt =

T∏

t=1
Zt.

4.3 Choosing CRC and αt
From Theorem 1, we would like to select αt’s to min-
imize

∏T
t=1 Zt. For the tth CRC, Zt can be written as

Zt = EDt

[
eαtd�,t

]
. Exact minimization of Zt is difficult and

we seek tractable approximations to minimize Zt. Since the
function eαr is convex in r and any constant α ∈ R, if
r ∈ [ − b, b], the following upper bound holds

eαr ≤ e−bα · b − r
2b

+ ebα · r + b
2b

, (32)

let bt = max�

∣∣d�,t
∣∣, then Zt is upper bounded by

Zt ≤ e−btαt + ebαt

2
+ ebtαt − e−btαt

2bt
εt, (33)

where εt = EDt

[
d�,t

]
. Then αt can be chosen to minimize

the upper bound of Zt. By zero-forcing the derivative of the
RHS of (33), and αt is nonnegative, we get

αt = max
{

1
2bt

log
(

bt − εt

bt + εt

)
, 0

}
, (34)

which corresponds to Zt ≤
√

1 − ε2
t /b2

t < 1. From (33) it
is straightforward to choose the tth CRC that minimize
the upper bound of Zt, i.e. maximize |εt/bt|. This choice
is analogous to [29] for a probabilistic output in [0, 1].

An alternative method is to consider the approximation
of eαr by the second-order Taylor expansion, as

eαr ≈ 1 + αr + 1
2
α2r2,
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where α > 0. Then Zt is approximated by

Zt ≈ EDt [1 + αtd�,t + 1
2
α2

t d2
�,t] = 1 + αtεt + 1

2
α2

t βt, (35)

where βt = EDt [d
2
�,t]. Then αt can be chosen to minimize

the RHS of (35), given

αt = max
{
− εt

βt
, 0

}
,

and correspondingly Zt ≈ 1 − ε2
t /βt. In this case the tth

CRC should be chosen to minimize the approximation of
Zt in (35), i.e. to maximize ε2

t /βt. We refer to the CRBoosting
algorithm associated with this update rule as CRBoosting-T.

Both updating rules (CRBoosting) and (CRBoosting-T)
are heuristic and do not minimize exactly Zt. In particular,
the update rule of CRBoosting is based on the assumption
that d�,t is bounded in an interval [ − bt, bt] and the bound
can be calculated in the algorithm. If bt is not very large,
it is possible to find a good upper bound of eαr and to
choose αt that minimizes this upper bound. On the other
hand, if d�,t is not suitably bounded in a small interval
[−bt, bt], it is still possible to approximate eαr by its second-
order Taylor expansion, and to choose αt that minimizes the
Taylor expansion.

5 NUMERICAL RESULTS

We present numerical results on digit recognition and
face recognition to show the classification accuracy gain
by optimally choosing the regularization parameter. For
digit recognition, the number of training images per class
is very high, corresponding to the case Ai is under-
determined; for face recognition, the number of training
images per class is usually small, corresponding to the case
Ai is over-determined. Finally, we provide performance
of the CRBoosting algorithm. Throughout the session, the
�1 minimization algorithm is implemented using the CVX
toolbox [30].

Note that, the CROC and CRBoosting apply to any
multi-class classification and object recognition problem
that is formulated in a vector space. In the following exam-
ples our goal is not to report the best possible results,
which may be obtained by selecting database specific fea-
tures, using part-based representations, learning distance
and alignment manifolds, etc., but to prove that a much bet-
ter classification performance can be achieved by balancing
the contributions of different intra-class and inter-class rep-
resentations. Thus, we use simple intensity features to report
the most objective comparative evaluations between the
existing multi-class classification schemes and our methods.

The computational complexity of the CROC and
CRBoosting algorithms depends on the candidate classi-
fiers. However, if we assume a set of candidate CRCs
are run a priori, the additional complexity of CROC and
CRBoosting is very small.

5.1 Digit Recognition Using CROC
The MNIST Handwritten Digits database [31] is used to test
the proposed multi-class classification algorithm. There are
about 6000 training examples and 1000 test examples of

Fig. 2. Classification results of the CROC shown as a regularization path
using partial measurements from random projection and eigenvector
projections for the MNIST digits database.

each class in the data set. Each image is an 8-bit gray-scale
image of “0” through “9” of dimension m = 28 × 28.

We consider a toy example where only ni = 50 train-
ing examples is provided per class, and the number of test
examples per class is ni = 500. We make d = 80 mea-
surements of each test sample, and the whole test image
is assumed unknown. We test the CROC against different
regularization parameters, with λ ∈ [0, 1].

In the case where the full sample is not known, we could
make partial observations using either random projections
using compressive sensing or projection along the eigen-
vector directions. Fig. 2 shows the classification accuracy
for both scenarios using sparse (L1) and least-norm (L2)
CRCs. Projections using eigenvectors achieve better result
than random projections in terms of accuracy. When λ = 1,
the SRC achieves slightly better result than the least-norm
CRC using random projections, and this gain is even larger
using eigenvector projections. However, a better classifica-
tion can be achieved with λ around 0.1 for both CRCs who
has very small performance gap between sparse and least-
norm CRCs. Table 2 further summarizes the classification
results for comparison. The optimal λ can be obtained by
performing cross-validation on randomly selected training
examples and testing examples for a few times, and com-
pute the average classification accuracy for different λ and
choose the optimal one. Fig. 3 shows the average classifica-
tion accuracy over 5 different partitions for the least-norm
CRC using eigenvector projections, showing the optimal
λ = 0.1 in this case.

We also examine the effect of different realizations of
measurement matrices � on the regulation path of CROC,

TABLE 2
Classification Results of the NSC, CRC and CROC Using

Partial Measurements from Random Projections and
Eigenvector Projections Respectively
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Fig. 3. Cross-validation for regularization parameter λ using least-norm
CRC from eigenvector projections for the MNIST digits database.

where the entries of � are all generated with standard
Gaussian random variables. Fig. 4 (a) shows the regu-
larization paths of 10 realizations of �. We also resam-
ple the training and test samples with the same size 10
times, and Fig. 4 (b) shows the regularization paths of
each realizations. In both figures the circled lines cor-
respond to least-norm representations, and the crossed
lines correspond to sparse representations. The regulariza-
tion paths all possess similar trends, where the optimal
λ tends be the around 0.1. This indicates the validity of
the proposed CROC is robust towards different choices
of measurement matrices and training sets. On the other
hand, the performance of CROC, and all other classifiers
varied slightly between different �’s, and it is useful to
optimize for a good measurement matrix for dimension
reduction.

Fig. 5 exemplifies how the CROC outperforms both the
NSC and the CRC by using the least-norm CR. Each row
shows the classifier residual using the NSC, the CRC and
the CROC when λ = 0.1 respectively. For two test exam-
ples of digit “0”: in (a) it is correctly classified by the NSC,
but the CRC misclassifies it as digit “8”; while in (b) it is
correctly classified by the CRC, but the NSC misclassifies

it as digit “2”. However, both can be correctly identified as
“0” using a properly regularized CROC.

If we increase the number of training samples per class
to ni = 500, the training dictionary per class is now
over-complete and we will use a principal subspace Bi of
dimension k for the NSC. We use the least-norm CRCs
to re-do the experiment for both random projection and
eigenvector projection when k = 30 and k = 50. As shown
in Fig. 6, there is a jump in the performance when λ is
around 0.05; and adopting the SCR does not give substan-
tial gain compared with the computational-light method of
optimizing the regularization parameter λ.

5.2 Face Recognition Using CROC
We test the proposed CROC against the Extended Yale-B
database [22], [32] and the AR database [33]. Since our main
goal is to show the benefit of the extra freedom by consid-
ering the regularization path, we do not test the robustness
of face recognition with disguise (sunglasses, scarves, etc.)
in this work, yet such an extension is straightforward.

5.2.1 Extended Yale-B Database
The Extended Yale-B database contains 2414 frontal-face
images of 38 individuals [32]. We use the cropped and
unnormalized face images of size 192 × 168 which are
captured under different illuminations [22] for our exper-
iments. For each individual, we randomly select ni = 30
training samples and the rest are for testing. We consider
random features of dimensions d = 100 and 300 and test
the variations below depending on if the full test image is
available:

• With the full image: three CRCs corresponding to the
LS representation xLS from (2), the sparse represen-
tation xL1 from (6) and the least-norm representation
xL2 from (7), are tested.

• Without the full image: two CRCs corresponding to
the sparse representation sL1 from (6) and the L2
representation sL2 from (7) are tested.

The classification accuracy for the NSC, CRC and CROC
with optimal λ are summarized in Table 3. It is obvious

Fig. 4. Classification results of the CROC shown as a regularization path using partial measurements from (a) 10 different realizations of ran-
dom projections, and (b) 10 different resamplings of training and test samples, for the MNIST digits database. The circled lines use least-norm
representations and the crossed lines use sparse representations.
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Fig. 5. Classifier residual for two examples of digit “0”. (a) and (b) Shows the original digit and its reconstruction from d = 80 eigenvector projections.
(c) Shows the classifier residual for digit in (a), which is correctly classified by the NSC, but misclassified as “8” by the SRC. (d) Shows the classifier
residual for digit in (b), which is correctly classified by the SRC, but misclassified as “2” by the NSC. Both are correctly classified by the CROC with
λ = 0.1.

to see that when the full image is available, the xLS repre-
sentation achieves the best classification accuracy with low
complexity. When the full image is not available, the SRC
corresponds to λ = 1, and achieves better accuracy than the
least-norm representation sL2 in terms of accuracy, in line
with the previous work showing sparsity helps classifica-
tion, in particular for smaller d = 100. However, this gain of
using sparse representation [12] can be achieve by the least-
norm representation with a properly tuned regularization
parameter, around λ = 0.1, at much lower computational
cost.

5.2.2 AR Database
Same as [12], we use a subset of 50 male subjects and
50 female subjects with only changes of illumination and
expressions. For each subject, the seven images from
Session 1 are used for training, and the other seven images

Fig. 6. Classification results for the regularization path for different
methods using partial measurements for the MNIST digits database.

from Session 2 are used for testing. The images are cropped
to size 60 × 43.

Fig. 7 shows the regularization path of face recognition
results for CROC with different input for the CRC:

• With the full image: the CRC with LS representation
xLS;

• Without the full image: the CRC with L2 repre-
sentation sL2 using random projection, eigenvector
projection and random pixel selection of the full
image when d = 100 and d = 300.

In the full image case, we show that better accuracy can
be achieved at λ = 0.3, about 1.5% improvement than at
λ = 1, corresponding to the result in [20]. In almost all
curves shown, some gain can be obtained by optimizing the

TABLE 3
Face Recognition Results for the NSC, CRC and CROC (with
Optimal λ): Full Image with LS, L1 and L2 Representations,
Partial Images of Various Dimensions Using Randomface

with L1 and L2 Representations for the Extended
Yale-B Database
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Fig. 7. Face recognition results on the regularization path for differ-
ent projection and collaborative representations: Full image with L2
representation, random pixel selection (partial), random projection and
eigenvector projection of full image with LS representations for the AR
database.

regularization parameter λ. Fig. 8 shows two face examples
and corresponding random pixel selection features: (a) face
“1” is correctly classified by the NSC, but misclassified as
face “58” by the CRC; (b) face “2” is correctly classified by
the CRC, but misclassified as face “25” by the NSC. Both
are correctly classified by the CROC with λ = 0.1.

Fig. 9 compares optimal classification result for the NSC,
SRC and CROC with L2 representation using random
pixel selection (partial), Randomface and Eigenface and LN
CR with different feature dimensions d = 30, 50, 100, 300.
The gain of the CROC with random pixel selection
and Randomface is more significant than the gain with
Eigenface.

5.3 Digit Recognition using CRBoosting
In this section, we test the proposed CRBoosting algorithm
for digit recognition when the samples are compressively
measured. We consider a set of candidate CRC that are com-
monly used in the literature, and a set of candidate NSC
with different ranks. Again we make use of the MNIST
Handwritten Digits database [31].

We use ntrain = 30 or ntrain = 50 samples per class for
training, nvalid = 100 per class for the validation set to train
CRBoosting, and ntest = 500 samples per class for testing.
A random matrix of i.i.d. Gaussian entries is used to make
d = 80 compressive measurements of each test sample. The
candidates of CRC use sL2 and sL1 as input CRs, and we
denote the CRC using sLq by CRC(Lq); the candidate NSC

Fig. 8. Two face examples and corresponding random pixel selections.
(a) Face “1” is correctly classified by the NSC, but misclassified as face
“58” by the CRC. (b) Face “2” is correctly classified by the CRC, but
misclassified as face “25” by the NSC. Both are correctly classified by
the CROC with λ = 0.1.

Fig. 9. Face recognition results for NSC, CRC and CROC using L2
representations versus different feature dimensions with random pixel
selection (partial), Randomface and Eigenface for the AR database.

use rank k = 10 and k = 20, and we denote the NSC with
rank k by NSC(k).

When ntrain = 30, the weighting vector learned from
CRBoosting is

α = [0, 0.1826, 0.3703, 0.4471],

where CRC(L1), NSC(10) and NSC(20) are selected. When
ntrain = 50 the weighting vector learned from CRBoosting is

α = [0, 0.3406, 0, 0.6594],

where only CRC(L1) and NSC(20) are selected. This shows
that CRBoosting has the ability to select the most power-
ful representations to form the final classifier. In both cases
the CRC(L2) is not selected, which may be explained by
its relative poor performance. Table 4 summarizes all the
classification results, and CRBoosting performs best in both
the validation and testing sets compared with all candidate
CRCs.

TABLE 4
Classification Results of CRC(L2), CRC(L1), NSC(10),

NSC(20), and CRBoosting on the Validation and
Testing Sets from d = 80 Random Measurements,

with (a) ntrain = 30 and (b) ntrain = 50 Training
Samples per Class
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TABLE 5
Classification Results of CRC(L2), CRC(L1), NSC(10), NSC

(20) and CRBoosting on the Validation and Testing Sets,
with 100 Training Samples per Class from d = 80

Measurements for the MNIST Dataset

We now use ntrain = 100 samples per class for training
and keep the size of validation and testing sets unchanged.
We test both the CRBoosting and CRBoosting-T algorithms
from a candidate set of CRC(L2), CRC(L1) and NSC(20) for
d = 80. The weighting vector learned from CRBoosting is

α = [0, 0.3921, 0, 0.6079];

and the weighting vector learned from CRBoosting-T is

αT = [0.0324, 0.1600, 0, 0.8076].

The classification results are summarized in Table 5, where
both CRBoosting algorithms outperform all the candidates,
and CRBoosting-T achieves better result than CRBoosting.

Since CRC(L2) and NSC(10) are not selected (having very
small weights in the final classifier), we can compare this
result with the regularization path of the CROC, where the
residual is computed as a weighted sum of residuals from
NSC(20) and CRC(L1) as

ri(λ) = (1 − λ)‖z − � is
NS(20)

i ‖2
2 + λ‖z − � isL1

i ‖2
2.

where λ = 0 coincides with the NSC, and λ = 1 coin-
cides with CRC(L1). We can see the weights learned from
CRBoosting and CRBoosting-T are very consistent with the
peak of the regularized path for both the validation and
testing sets in Fig. 10.

Fig. 10. Regularization path of CROC for NSC(20) and CRC(L1) on both
validation and testing sets for the MNIST dataset.

TABLE 6
Classification Results of CRC(L2), CRC(L1), NSC and

CRBoosting on the Validation and Testing Sets for
the Extended Yale-B Database from d = 100

Measurements

5.4 Face Recognition Using CRBoosting
We use the extended Yale-B database to test the per-
formance of CRBoosting on face recognition. For each
individual, we select the first ntrain = 20 samples for
training, the next nvalid = 20 samples for validation, and
the rest are for testing. We use a random measurement
matrix to take d = 100 compressive measurements of
each sample. The candidates of CRC are CRC(L1) and
CRC(L2) as described earlier; and the candidate NSC
use all training samples to form the subspace of rank
20. The classification results are summarized in Table 6,
where the CRBoosting achieved a better performance
than all candidates. The learned weighting vector from
CRBoosting is

α = [0, 0.1677, 0.8323];
and the learned weighting vector from CRBoosting-T is

αT = [0, 0.3741, 0.6259].

In both cases the CRC(L2) is not selected due to its poor per-
formance, and the learned weights between CRC(L1) and
NSC are comparable as the optimal value from CROC, indi-
cating the effectiveness of the CRBoosting procedure. It is
worth mentioning that although the CRBoosting procedure
requires an additional validation set, it is possible to merge
the training and validation set for testing after we learn the
weights.

6 CONCLUSION

In this paper we explicitly decompose the multi-class clas-
sification problem into two steps, namely finding the col-
laborative representation and inputting it to the multi-class
classifier. We explore different choices of collaborative rep-
resentations and propose the Collaborative Representation
Optimized Classifier (CROC) which provides a regulariza-
tion path of classifiers where the NSC and the CRC are
special cases on the whole regularization path. We show
that classification performance can be further improved by
optimally tuning the regularization parameter at no extra
computational cost.

We further propose the Collaborative Representation
based Boosting (CRBoosting) algorithm to efficiently com-
bine multiple collaborative representations by classifying a
test sample to the class with the minimal weighted sum of
residuals from a set of candidate CRCs and NSCs, where
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the weights are found following an AdaBoosting based pro-
cedure. The ability to boost in the residual domain instead
of in the decision domain allows CRBoosting to outperform
the candidates even with only two candidates, which is not
possible for AdaBoost. We also proved similar validation
error bound for CRBoosting.

Our algorithms are validated through numerical results
on digit recognition and face recognition in particular
from compressively measured samples. We demonstrate
the potential of exploring multiple collaborative represen-
tations over focusing on a particular choice in multi-class
learning.
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